Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiology ; 311(2): e232521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742969

RESUMO

Background Cerebellar mutism syndrome (CMS), a complication following medulloblastoma surgery, has been linked to dentato-thalamo-cortical tract (DTCT) injury; the association of the degree of DTCT injury with severity of CMS-related symptoms has not been investigated. Purpose To investigate the association between severity of CMS-related symptoms and degree and patterns of DTCT injury with use of diffusion tensor imaging (DTI), and if laterality of injury influences neurologic symptoms. Materials and Methods This retrospective case-control study used prospectively collected clinical and DTI data on patients with medulloblastoma enrolled in a clinical trial (between July 2016 and February 2020) and healthy controls (between April and November 2017), matched with the age range of the participants with medulloblastoma. CMS was divided into types 1 (CMS1) and 2 (CMS2). Multivariable logistic regression was used to investigate the relationship between CMS likelihood and DTCT injury. Results Overall, 82 participants with medulloblastoma (mean age, 11.0 years ± 5.2 [SD]; 53 male) and 35 healthy controls (mean age, 18.0 years ± 3.06; 18 female) were included. In participants with medulloblastoma, DTCT was absent bilaterally (AB), absent on the right side (AR), absent on the left side (AL), or present bilaterally (PB), while it was PB in all healthy controls. Odds of having CMS were associated with higher degree of DTCT damage (AB, odds ratio = 272.7 [95% CI: 269.68, 275.75; P < .001]; AR, odds ratio = 14.40 [95% CI: 2.84, 101.48; P < .001]; and AL, odds ratio = 8.55 [95% CI: 1.15, 74.14; P < .001). Left (coefficient = -0.07, χ2 = 12.4, P < .001) and right (coefficient = -0.15, χ2 = 33.82, P < .001) DTCT volumes were negatively associated with the odds of CMS. More participants with medulloblastoma with AB showed CMS1; unilateral DTCT absence prevailed in CMS2. Lower DTCT volumes correlated with more severe ataxia. Unilateral DTCT injury caused ipsilateral dysmetria; AB caused symmetric dysmetria. PB indicated better neurologic outcome. Conclusion The severity of CMS-associated mutism, ataxia, and dysmetria was associated with DTCT damage severity. DTCT damage patterns differed between CMS1 and CMS2. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Dorigatti Soldatelli and Ertl-Wagner in this issue.


Assuntos
Neoplasias Cerebelares , Imagem de Tensor de Difusão , Meduloblastoma , Mutismo , Complicações Pós-Operatórias , Humanos , Meduloblastoma/cirurgia , Meduloblastoma/diagnóstico por imagem , Masculino , Feminino , Mutismo/etiologia , Mutismo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Estudos Retrospectivos , Criança , Estudos de Casos e Controles , Adolescente , Neoplasias Cerebelares/diagnóstico por imagem , Neoplasias Cerebelares/cirurgia , Complicações Pós-Operatórias/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Tálamo/diagnóstico por imagem
2.
Neuro Oncol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581226

RESUMO

BACKGROUND: Cerebellar mutism syndrome (CMS) is characterized by deficits of speech, movement, and affect that can occur following tumor removal from the posterior fossa. The role of cerebrocerebellar tract injuries in the etiology of CMS remains unclear, with recent studies suggesting that cerebrocerebellar dysfunction may be related to chronic, rather than transient, symptomatology. METHODS: We measured functional connectivity between the cerebellar cortex and functional nodes throughout the brain using fMRI acquired after tumor removal but prior to adjuvant therapy in a cohort of 70 patients diagnosed with medulloblastoma. Surgical lesions were mapped to the infratentorial anatomy, and connectivity with cerebral cortex was tested for statistical dependence on extent of cerebellar outflow pathway injury. RESULTS: CMS diagnosis was associated with an increase in connectivity between the right cerebellar and left cerebral hemisphere, maximally between cerebellum and ventromedial prefrontal cortex (VM-PFC). Connectivity dependence on cerebellar outflow was significant for some speech nodes but not for VM-PFC, suggesting altered input to the cerebellum. Connectivity between posterior regions of cerebellar cortex and ipsilateral dentate nuclei was abnormal in CMS participants, maximally within the right cerebellar hemisphere. CONCLUSIONS: The functional abnormalities we identified are notably upstream of where causal surgical injury is thought to occur, indicating a secondary phenomenon. The VM-PFC is involved in several functions that may be relevant to the symptomatology of CMS, including emotional control and motor learning. We hypothesize that these abnormalities may reflect maladaptive learning within the cerebellum consequent to disordered motor and limbic function by the periaqueductal grey and other critical midbrain targets.

3.
Brain ; 146(11): 4755-4765, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37343136

RESUMO

Cerebellar mutism syndrome is a disorder of speech, movement and affect that can occur after tumour removal from the posterior fossa. Projections from the fastigial nuclei to the periaqueductal grey area were recently implicated in its pathogenesis, but the functional consequences of damaging these projections remain poorly understood. Here, we examine functional MRI data from patients treated for medulloblastoma to identify functional changes in key brain areas that comprise the motor system for speech, which occur along the timeline of acute speech impairment in cerebellar mutism syndrome. One hundred and twenty-four participants, all with medulloblastoma, contributed to the study: 45 with cerebellar mutism syndrome, 11 patients with severe postoperative deficits other than mutism, and 68 without either (asymptomatic). We first performed a data-driven parcellation to spatially define functional nodes relevant to the cohort that align with brain regions critical for the motor control of speech. We then estimated functional connectivity between these nodes during the initial postoperative imaging sessions to identify functional deficits associated with the acute phase of the disorder. We further analysed how functional connectivity changed over time within a subset of participants that had suitable imaging acquired over the course of recovery. Signal dispersion was also measured in the periaqueductal grey area and red nuclei to estimate activity in midbrain regions considered key targets of the cerebellum with suspected involvement in cerebellar mutism pathogenesis. We found evidence of periaqueductal grey dysfunction in the acute phase of the disorder, with abnormal volatility and desynchronization with neocortical language nodes. Functional connectivity with periaqueductal grey was restored in imaging sessions that occurred after speech recovery and was further shown to be increased with left dorsolateral prefrontal cortex. The amygdalae were also broadly hyperconnected with neocortical nodes in the acute phase. Stable connectivity differences between groups were broadly present throughout the cerebrum, and one of the most substantial differences-between Broca's area and the supplementary motor area-was found to be inversely related to cerebellar outflow pathway damage in the mutism group. These results reveal systemic changes in the speech motor system of patients with mutism, centred on limbic areas tasked with the control of phonation. These findings provide further support for the hypothesis that periaqueductal grey dysfunction (following cerebellar surgical injury) contributes to the transient postoperative non-verbal episode commonly observed in cerebellar mutism syndrome but highlights a potential role of intact cerebellocortical projections in chronic features of the disorder.


Assuntos
Doenças Cerebelares , Neoplasias Cerebelares , Meduloblastoma , Mutismo , Humanos , Meduloblastoma/cirurgia , Meduloblastoma/patologia , Fala , Mutismo/etiologia , Mutismo/patologia , Neoplasias Cerebelares/patologia , Cerebelo/patologia , Doenças Cerebelares/complicações , Mesencéfalo , Complicações Pós-Operatórias
4.
Front Syst Neurosci ; 17: 1126508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064161

RESUMO

There is general agreement that cerebrocerebellar interactions via cerebellothalamocortical pathways are essential for a cerebellar cognitive and motor functions. Cerebellothalamic projections were long believed target mainly the ventral lateral (VL) and part of the ventral anterior (VA) nuclei, which project to cortical motor and premotor areas. Here we review new insights from detailed tracing studies, which show that projections from the cerebellum to the thalamus are widespread and reach almost every thalamic subnucleus, including nuclei involved in cognitive functions. These new insights into cerebellothalamic pathways beyond the motor thalamus are consistent with the increasing evidence of cerebellar cognitive function. However, the function of cerebellothalamic pathways and how they are involved in the various motor and cognitive functions of the cerebellum is still unknown. We briefly review literature on the role of the thalamus in coordinating the coherence of neuronal oscillations in the neocortex. The coherence of oscillations, which measures the stability of the phase relationship between two oscillations of the same frequency, is considered an indicator of increased functional connectivity between two structures showing coherent oscillations. Through thalamocortical interactions coherence patterns dynamically create and dissolve functional cerebral cortical networks in a task dependent manner. Finally, we review evidence for an involvement of the cerebellum in coordinating coherence of oscillations between cerebral cortical structures. We conclude that cerebellothalamic pathways provide the necessary anatomical substrate for a proposed role of the cerebellum in coordinating neuronal communication between cerebral cortical areas by coordinating the coherence of oscillations.

5.
Neurooncol Adv ; 5(1): vdad006, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36926247

RESUMO

Background: Surgical resection is the gold standard in the treatment of pediatric posterior fossa tumors. However, surgical damage is often unavoidable and its association with postoperative complications is not well understood. A reliable localization and measure of cerebellar damage is fundamental to study the relationship between the damaged cerebellar regions and postoperative neurological outcomes. Existing cerebellum normalization methods are likely to fail on postoperative scans, therefore current approaches to measure postoperative damage rely on manual labelling. In this work, we develop a robust algorithm to automatically detect and measure cerebellum damage in postoperative 3D T1 magnetic resonance imaging (MRI). Methods: In our approach, normal brain tissues are first segmented using a Bayesian algorithm customized for postoperative scans. Next, the cerebellum is isolated by nonlinear registration of a whole-brain template to the native space. The isolated cerebellum is then normalized into the spatially unbiased atlas (SUIT) space using anatomical information derived from the previous step. Finally, the damage is detected in the atlas space by comparing the normalized cerebellum and the SUIT template. Results: We evaluated our damage detection tool on postoperative scans of 153 patients with medulloblastoma based on inspection by human experts. We also designed a simulation to evaluate performance without human intervention and with an explicitly controlled and defined ground truth. Our results show that the approach performs adequately under various realistic conditions. Conclusions: We develop an accurate, robust, and fully automatic localization and measurement of cerebellar damage in the atlas space using postoperative MRI.

6.
Neuro Oncol ; 25(2): 375-385, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35789275

RESUMO

BACKGROUND: Pediatric postoperative cerebellar mutism syndrome (CMS) is a rare but well-known complication of medulloblastoma (Mb) resection with devastating effects on expressive language, mobility, cognition, and emotional regulation that diminishes quality of life for many Mb survivors. The specific anatomical and neuronal basis of CMS remains obscure. We address this issue by identifying patterns of surgical damage and secondary axonal degeneration in Mb survivors with CMS. METHODS: Children with Mb deemed high risk for CMS based on intraventricular location of the tumor had T1 images analyzed for location(s) of surgical damage using a specially developed algorithm. We used three complementary methods of spatial analysis to identify surgical damage linked to CMS diagnosis. Magnetization transfer ratio (MTR) images were analyzed for evidence of demyelination in anatomic regions downstream of the cerebellum, indicating neuronal dysfunction. RESULTS: Spatial analyses highlighted damage to the fastigial nuclei and their associated cerebellar cortices as the strongest predictors of CMS. CMS-related MTR decrease was greatest in the ventral periaqueductal gray (PAG) area and highly consistent in the left red nucleus. CONCLUSION: Our evidence points to disruption of output from the fastigial nuclei as a likely causal trigger for CMS. We propose that core CMS symptoms result from a disruption in the triggering of survival behaviors regulated by the PAG, including the gating of vocalization and volitional movement. The fastigial nuclei provide the densest output to the PAG from the cerebellum, thus sparing these structures may provide a greater likelihood of CMS prevention.


Assuntos
Doenças Cerebelares , Neoplasias Cerebelares , Meduloblastoma , Mutismo , Criança , Humanos , Substância Cinzenta Periaquedutal/patologia , Mutismo/etiologia , Qualidade de Vida , Complicações Pós-Operatórias , Doenças Cerebelares/complicações , Doenças Cerebelares/diagnóstico , Meduloblastoma/patologia , Neoplasias Cerebelares/cirurgia , Neoplasias Cerebelares/complicações
7.
Cerebellum ; 21(5): 762-775, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35218525

RESUMO

Spatial working memory (SWM) is a cerebrocerebellar cognitive skill supporting survival-relevant behaviors, such as optimizing foraging behavior by remembering recent routes and visited sites. It is known that SWM decision-making in rodents requires the medial prefrontal cortex (mPFC) and dorsal hippocampus. The decision process in SWM tasks carries a specific electrophysiological signature of a brief, decision-related increase in neuronal communication in the form of an increase in the coherence of neuronal theta oscillations (4-12 Hz) between the mPFC and dorsal hippocampus, a finding we replicated here during spontaneous exploration of a plus maze in freely moving mice. We further evaluated SWM decision-related coherence changes within frequency bands above theta. Decision-related coherence increases occurred in seven frequency bands between 4 and 200 Hz and decision-outcome-related differences in coherence modulation occurred within the beta and gamma frequency bands and in higher frequency oscillations up to 130 Hz. With recent evidence that Purkinje cells in the cerebellar lobulus simplex (LS) represent information about the phase and phase differences of gamma oscillations in the mPFC and dorsal hippocampus, we hypothesized that LS might be involved in the modulation of mPFC-hippocampal gamma coherence. We show that optical stimulation of LS significantly impairs SWM performance and decision-related mPFC-dCA1 coherence modulation, providing causal evidence for an involvement of cerebellar LS in SWM decision-making at the behavioral and neuronal level. Our findings suggest that the cerebellum might contribute to SWM decision-making by optimizing the decision-related modulation of mPFC-dCA1 coherence.


Assuntos
Memória de Curto Prazo , Memória Espacial , Animais , Córtex Cerebelar , Hipocampo , Memória de Curto Prazo/fisiologia , Camundongos , Córtex Pré-Frontal/fisiologia , Memória Espacial/fisiologia
8.
Front Syst Neurosci ; 15: 781527, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087384

RESUMO

Cognitive processes involve precisely coordinated neuronal communications between multiple cerebral cortical structures in a task specific manner. Rich new evidence now implicates the cerebellum in cognitive functions. There is general agreement that cerebellar cognitive function involves interactions between the cerebellum and cerebral cortical association areas. Traditional views assume reciprocal interactions between one cerebellar and one cerebral cortical site, via closed-loop connections. We offer evidence supporting a new perspective that assigns the cerebellum the role of a coordinator of communication. We propose that the cerebellum participates in cognitive function by modulating the coherence of neuronal oscillations to optimize communications between multiple cortical structures in a task specific manner.

9.
Cell Rep ; 27(8): 2328-2334.e3, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31116979

RESUMO

The cerebellum has long been implicated in tasks involving precise temporal control, especially in the coordination of movements. Here we asked whether the cerebellum represents temporal aspects of oscillatory neuronal activity, measured as instantaneous phase and difference between instantaneous phases of oscillations in two cerebral cortical areas involved in cognitive function. We simultaneously recorded Purkinje cell (PC) single-unit spike activity in cerebellar lobulus simplex (LS) and Crus I and local field potential (LFP) activity in the medial prefrontal cortex (mPFC) and dorsal hippocampus CA1 region (dCA1). Purkinje cells in cerebellar LS and Crus I differentially represented specific phases and phase differences of mPFC and dCA1 LFP oscillations in a frequency-specific manner, suggesting a site- and frequency-specific cerebellar representation of temporal aspects of neuronal oscillations in non-motor cerebral cortical areas. These findings suggest that cerebellar interactions with cerebral cortical areas involved in cognitive functions might involve temporal coordination of neuronal oscillations.


Assuntos
Córtex Cerebelar/fisiopatologia , Hipocampo/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Potenciais da Membrana
10.
Front Neurosci ; 12: 837, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524224

RESUMO

In the neocortex, communication between neurons is heavily influenced by the activity of the surrounding network, with communication efficacy increasing when population patterns are oscillatory and coherent. Less is known about whether coherent oscillations are essential for conveyance of thalamic input to the neocortex in awake animals. Here we investigated whether visual-evoked oscillations and spikes in the primary visual cortex (V1) were aligned with those in the visual thalamus (dLGN). Using simultaneous recordings of visual-evoked activity in V1 and dLGN we demonstrate that thalamocortical communication involves synchronized local field potential oscillations in the high gamma range (50-90 Hz) which correspond uniquely to precise dLGN-V1 spike synchrony. These results provide evidence of a role for high gamma oscillations in mediating thalamocortical communication in the visual pathway of mice, analogous to beta oscillations in primates.

11.
Sci Rep ; 7(1): 8950, 2017 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-28827599

RESUMO

Several recent studies have shown that respiration modulates oscillatory neuronal activity in the neocortex and hippocampus on a cycle-by-cycle basis. It was suggested that this respiratory influence on neuronal activity affects cognitive functions, including memory. Sharp-wave ripples (SWRs) are high-frequency local field potential activity patterns characteristic for the hippocampus and implicated in memory consolidation and recall. Here we show that the timing of SWR events is modulated by the respiratory cycle, with a significantly increased probability of SWRs during the early expiration phase. This influence of respiration on SWR occurrence was eliminated when olfactory bulb activity was inhibited. Our findings represent a possible neuronal mechanism for a direct influence of the respiratory cycle on memory function.


Assuntos
Hipocampo/fisiologia , Neurônios/fisiologia , Respiração , Vigília/fisiologia , Potenciais de Ação , Animais , Masculino , Memória , Camundongos , Bulbo Olfatório/fisiologia
12.
eNeuro ; 4(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28828401

RESUMO

Mild traumatic brain injury (mTBI) can cause severe long-term cognitive and emotional deficits, including impaired memory, depression, and persevering fear, but the neuropathological basis of these deficits is uncertain. As medial prefrontal cortex (mPFC) and hippocampus play important roles in memory and emotion, we used multi-site, multi-electrode recordings of oscillatory neuronal activity in local field potentials (LFPs) in awake, head-fixed mice to determine if the functioning of these regions was abnormal after mTBI, using a closed-skull focal cranial blast model. We evaluated mPFC, hippocampus CA1, and primary somatosensory/visual cortical areas (S1/V1). Although mTBI did not alter the power of oscillations, it did cause increased coherence of θ (4-10 Hz) and ß (10-30 Hz) oscillations within mPFC and S1/V1, reduced CA1 sharp-wave ripple (SWR)-evoked LFP activity in mPFC, downshifted SWR frequencies in CA1, and enhanced θ-γ phase-amplitude coupling (PAC) within mPFC. These abnormalities might be linked to the impaired memory, depression, and persevering fear seen after mTBI. Treatment with the cannabinoid type-2 (CB2) receptor inverse agonist SMM-189 has been shown to mitigate functional deficits and neuronal injury after mTBI in mice. We found that SMM-189 also reversed most of the observed neurophysiological abnormalities. This neurophysiological rescue is likely to stem from the previously reported reduction in neuron loss and/or the preservation of neuronal function and connectivity resulting from SMM-189 treatment, which appears to stem from the biasing of microglia from the proinflammatory M1 state to the prohealing M2 state by SMM-189.


Assuntos
Benzofenonas/uso terapêutico , Concussão Encefálica/tratamento farmacológico , Concussão Encefálica/patologia , Encéfalo/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/uso terapêutico , Potenciais de Ação/efeitos dos fármacos , Animais , Encéfalo/patologia , Mapeamento Encefálico , Ondas Encefálicas/efeitos dos fármacos , Modelos Animais de Doenças , Eletroencefalografia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Análise de Componente Principal , Receptor CB2 de Canabinoide/metabolismo , Fatores de Tempo
13.
Front Neural Circuits ; 10: 115, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28127277

RESUMO

Ongoing fluctuations of neuronal activity have long been considered intrinsic noise that introduces unavoidable and unwanted variability into neuronal processing, which the brain eliminates by averaging across population activity (Georgopoulos et al., 1986; Lee et al., 1988; Shadlen and Newsome, 1994; Maynard et al., 1999). It is now understood, that the seemingly random fluctuations of cortical activity form highly structured patterns, including oscillations at various frequencies, that modulate evoked neuronal responses (Arieli et al., 1996; Poulet and Petersen, 2008; He, 2013) and affect sensory perception (Linkenkaer-Hansen et al., 2004; Boly et al., 2007; Sadaghiani et al., 2009; Vinnik et al., 2012; Palva et al., 2013). Ongoing cortical activity is driven by proprioceptive and interoceptive inputs. In addition, it is partially intrinsically generated in which case it may be related to mental processes (Fox and Raichle, 2007; Deco et al., 2011). Here we argue that respiration, via multiple sensory pathways, contributes a rhythmic component to the ongoing cortical activity. We suggest that this rhythmic activity modulates the temporal organization of cortical neurodynamics, thereby linking higher cortical functions to the process of breathing.


Assuntos
Ondas Encefálicas/fisiologia , Córtex Cerebral/fisiologia , Periodicidade , Respiração , Animais , Humanos
14.
Pediatr Neurol ; 52(1): 94-103, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25439485

RESUMO

OBJECTIVE: Accurate noninvasive assessment of motor function using functional MRI (fMRI) and magnetoencephalography (MEG) is a challenge in patients who are very young or who are developmentally delayed. In such cases, passive mapping of the sensorimotor cortex is performed under sedation. We examined the feasibility of using transcranial magnetic stimulation (TMS) as a motor mapping tool in awake children younger than 3 years of age. METHODS: Six children underwent motor mapping with TMS while awake as well as passive sensorimotor mapping under conscious sedation with MEG during tactile stimulation (n = 5) and fMRI during passive hand movements (n = 4). RESULTS: Stimulation of the motor cortex via TMS successfully elicited evoked responses in contralateral hand muscles in 5 patients. The location of primary motor cortex in the precentral gyrus identified by TMS corresponded with the postcentral location of the primary sensory cortex identified by MEG in 2 patients and to the sensorimotor cortex identified by fMRI in 3 children. In this cohort, we demonstrate that TMS can illuminate abnormalities in motor physiology including motor reorganization. We also demonstrate the feasibility of using TMS-derived contralateral silent periods to approximate the location of motor cortex in the absence of an evoked response. When compared to chronological age, performance functioning level appears to be better in predicting successful mapping outcome with TMS. CONCLUSIONS: Our findings indicate that awake TMS is a safe alternative to MEG and fMRI performed under sedation to localize the motor cortex and provides additional insight into the underlying pathophysiology and motor plasticity in toddlers.


Assuntos
Mapeamento Encefálico/métodos , Atividade Motora/fisiologia , Córtex Motor/fisiologia , Estimulação Magnética Transcraniana/métodos , Pré-Escolar , Potencial Evocado Motor , Estudos de Viabilidade , Feminino , Mãos/fisiologia , Humanos , Lactente , Imageamento por Ressonância Magnética , Magnetoencefalografia , Masculino , Estimulação Física , Estudos Retrospectivos , Córtex Sensório-Motor/fisiologia , Percepção do Tato/fisiologia
15.
Neuroradiol J ; 26(5): 548-54, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24199815

RESUMO

Non-invasive functional evaluation of the brain complements structural MRI imaging and has largely supplanted invasive techniques such as awake craniotomy. Techniques used for functional mapping of the brain include BOLD-functional MRI (fMRI), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS). We describe the case of a right-handed patient with a lesion centered in the left inferior perirolandic cortex who underwent fMRI, MEG, and TMS on a single day to facilitate maximal lesion resection while preserving eloquent cortex and eloquent white matter tracts.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiopatologia , Córtex Cerebral/fisiopatologia , Neuroimagem Funcional/métodos , Glioma/fisiopatologia , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Córtex Cerebral/patologia , Córtex Cerebral/cirurgia , Feminino , Glioma/patologia , Glioma/cirurgia , Humanos , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia , Pessoa de Meia-Idade , Neuronavegação/métodos , Estimulação Magnética Transcraniana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA